
Efficient Sampling for k-Determinantal Point Processes

Chengtao Li Stefanie Jegelka Suvrit Sra

MIT MIT MIT

Abstract

Determinantal Point Processes (DPPs) are ele-

gant probabilistic models of repulsion and diver-

sity over discrete sets of items. But their ap-

plicability to large sets is hindered by expen-

sive cubic-complexity matrix operations for ba-

sic tasks such as sampling. In light of this, we

propose a new method for approximate sampling

from discrete k-DPPs. Our method takes advan-

tage of the diversity property of subsets sampled

from a DPP, and proceeds in two stages: first it

constructs coresets for the ground set of items;

thereafter, it efficiently samples subsets based on

the constructed coresets. As opposed to pre-

vious approaches, our algorithm aims to mini-

mize the total variation distance to the original

distribution. Experiments on both synthetic and

real datasets indicate that our sampling algorithm

works efficiently on large data sets, and yields

more accurate samples than previous approaches.

1 Introduction

Subset selection problems lie at the heart of many appli-

cations where a small subset of items must be selected to

represent a larger population. Typically, the selected sub-

sets are expected to fulfill various criteria such as spar-

sity, grouping, or diversity. Our focus is on diversity,

a criterion that plays a key role in a variety of applica-

tions, such as gene network subsampling [9], document

summarization [36], video summarization [23], content

driven search [4], recommender systems [47], sensor place-

ment [29], among many others [1, 5, 21, 30, 33, 43, 44].

Diverse subset selection amounts to sampling from the set

of all subsets of a ground set according to a measure that

places more mass on subsets with qualitatively different

items. An elegant realization of this idea is given by Deter-
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minantal Point Processes (DPPs), which are probabilistic

models that capture diversity by assigning subset probabil-

ities proportional to (sub)determinants of a kernel matrix.

DPPs enjoy rising interest in machine learning [4, 23,

28, 30, 32, 34, 38]; a part of their appeal can be at-

tributed to computational tractability of basic tasks such

as computing partition functions, sampling, and extract-

ing marginals [27, 33]. But despite being polynomial-time,

these tasks remain infeasible for large data sets. DPP sam-

pling, for example, relies on an eigendecomposition of the

DPP kernel, whose cubic complexity is a huge impediment.

Cubic preprocessing costs also impede wider use of the car-

dinality constrained variant k-DPP [32].

These drawbacks have triggered work on approximate sam-

pling methods. Much work has been devoted to approxi-

mately sample from a DPP by first approximating its ker-

nel via algorithms such as the Nyström method [3], Ran-

dom Kitchen Sinks [2, 41], or matrix ridge approxima-

tions [45, 46], and then sampling based on this approxi-

mation. However, these methods are somewhat inappro-

priate for sampling because they aim to project the DPP

kernel onto a lower dimensional space while minimizing

a matrix norm, rather than minimizing an error measure

sensitive to determinants. Alternative methods use a dual

formulation [30], which however presupposes a decompo-

sition L = XX> of the DPP kernel, which may be unavail-

able and inefficient to compute in practice. Finally, MCMC

[6, 10, 14, 28] offers a potentially attractive avenue differ-

ent from the above approaches that all rely on the same

spectral technique.

We pursue a yet different approach. While being similar to

matrix approximation methods in exploiting redundancy in

the data, in sharp contrast to methods that minimize matrix

norms, we focus on minimizing the total variation distance

between the original DPP and our approximation. As a re-

sult, our approximation models the true DPP probability

distribution more faithfully, while permitting faster sam-

pling. We make the following key contributions:

– An algorithm that constructs coresets for approximat-

ing a k-DPP by exploiting latent structure in the data.

The construction, aimed at minimizing the total varia-

tion distance, takes O(NM3) time; linear in the num-

ber N of data points. The construction works as the
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overhead of sampling algorithm and is much faster

than standard cubic-time overhead that exploits eigen-

decomposition of kernel matrices. We also investigate

conditions under which such an approximation is good.

– A sampling procedure that yields approximate k-DPP

subsets using the constructed coresets. While most

other sampling methods sample diverse subsets in

O(k2N) time, the sampling time for our coreset-based

algorithm is O(k2M), where M � N is a user-

specified parameter independent of N .

Our experiments indicate that our construction works well

for a wide range of datasets, delivers more accurate approx-

imations than the state-of-the-art, and is more efficient, es-

pecially when multiple samples are required.

Overview of our approach. Our sampling procedure

runs in two stages. Its first stage constructs an approximate

probability distribution close in total variation distance to

the true k-DPP. The next stage efficiently samples from

this approximate distribution.

Our approximation is motivated by the diversity sampling

nature of DPPs: in a DPP most of the probability mass will

be assigned to diverse subsets. This leaves room for ex-

ploiting redundancy. In particular, if the data possesses la-

tent grouping structure, certain subsets will be much more

likely to be sampled than others. For instance, if the data

are tightly clustered, then any sample that draws two points

from the same cluster will be very unlikely.

The key idea is to reduce the effective size of the ground

set. We do this via the idea of coresets [17, 25], small

subsets of the data that capture function values of inter-

est almost as well as the full dataset. Here, the function

of interest is a k-DPP distribution. Once a coreset is con-

structed, we can sample a subset of core points, and then,

based on this subset, sample a subset of the ground set. For

a coreset of size M , our sampling time is O(k2M), which

is independent of N since we are using k-DPPs [32].

Related work. DPPs have been studied in statistical

physics and probability [11, 12, 27]; they have witnessed

rising interest in machine learning [21, 23, 30, 32–34, 38,

44]. Cardinality-conditioned DPP sampling is also referred

to as “volume sampling”, which has been used for ma-

trix approximations [15, 16]. Several works address faster

DPP sampling via matrix approximations [3, 15, 30, 37]

or MCMC [10, 28]. Except for MCMC, even if we ex-

clude preprocessing, known sampling methods still re-

quire O(k2N) time for a single sample; we reduce this to

O(k2M). Finally, different lines of work address learning

DPPs [4, 22, 31, 38] and MAP estimation [20].

Coresets have been applied to large-scale clustering [8,

18, 24, 26], PCA and CCA [18, 39], and segmentation of

streaming data [42].

2 Setup and basic definitions

A determinantal point process DPP(L) is a distribution over

all subsets of a ground set Y of cardinality N . It is de-

termined by a positive semidefinite kernel L ∈ R
N×N .

Let LY be the submatrix of L consisting of the entries Lij

with i, j ∈ Y ⊆ Y . Then, the probability PL(Y ) of ob-

serving Y ⊆ Y is proportional to det(LY ); consequently,

PL(Y ) = det(LY )/ det(L+I). Conditioning on sampling

sets of fixed cardinality k, one obtains a k-DPP [32]:

PL,k(Y ) : = PL(Y | |Y | = k)

= det(LY )ek(L)
−1J |Y | = kK,

where ek(L) is the k-th coefficient of the characteristic

polynomial det(λI − L) =
∑N

k=0(−1)kek(L)λ
N−k. We

assume that PL,k(Y ) > 0 for all subsets Y ⊆ Y of cardi-

nality k. To simplify notation, we also write Pk , PL,k.

Our goal is to construct an approximation P̂k to Pk that is

close in total variation distance

‖P̂k − Pk‖tv := 1
2

∑

Y⊆Y,|Y |=k

|P̂k(Y )− Pk(Y )|, (1)

and permits faster sampling than Pk. Broadly, we proceed

as follows. First, we define a partition Π = {Y1, . . . ,YM}
of Y and extract a subset C ⊂ Y of M core points, contain-

ing one point from each part. Then, for the set C we con-

struct a special kernel L̃ (as described in Section 3). When

sampling, we first sample a set Ỹ ∼ DPPk(L̃) and then,

for each c ∈ Ỹ we uniformly sample one of its assigned

points y ∈ Yc. These second-stage points y form our final

sample. We denote the resulting distribution by P̂k = PC,k.

Algorithm 1 formalizes the sampling procedure, which, af-

ter one eigendecomposition of the small matrix L̃.

We begin by analyzing the effect of the partition on the

approximation error, and then devise an algorithm to ap-

proximately minimize the error. We empirically evaluate

our approach in Section 6.

3 Coreset sampling

Let Π = {Y1, . . . ,YM} be a partition of Y , i.e., ∪M
i=1Yi =

Y and Yi∩Yj = ∅ for i 6= j. We call C ⊆ Y a coreset with

respect to a partition Π if |C ∩ Yi| = 1 for i ∈ [M ]. With

a slight abuse of notation, we index each part Yc ∈ Π by

its core c ∈ C ∩ Yc. Based on the partition Π, we call a set

Y ⊆ Y singular1 with respect to Π′ ⊆ Π, if for Yi ∈ Π′ we

have |Y ∩Yi| ≤ 1 and for Yj ∈ Π\Π′ we have |Y ∩Yj | = 0.

We say Y is k-singular if Y is singular and |Y | = k.

Given a partition Π and core C, we construct a rescaled core

kernel L̃ ∈ R
M×M with entries L̃c,c′ =

√
|Yc||Yc′ |Lc,c′ .

1In combinatorial language, Y is an independent set in the
partition matroid defined by Π.
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We then use this smaller matrix L̃ and its eigendecomposi-

tion as an input to our two-stage sampling procedure in Al-

gorithm 1, which we refer to as COREDPP. The two stages

are: (i) sample a k-subset from C according to DPPk(L̃);
and (ii) for each c, pick an element y ∈ Yc uniformly at

random. This algorithm uses only the much smaller matrix

L̃ and samples a subset from Y in O(k2M) time. When

M � N and we want many samples, it translates into a

notable improvement over the O(k2N) time of sampling

directly from DPPk(L).

The following lemma shows that COREDPP is equivalent

to sampling from a k-DPP where we replace each point in

Y by its corresponding core point, and sample with the re-

sulting induced kernel LC(Y).

Lemma 1. COREDPP is equivalent to sampling from

DPPk(LC(Y)), where in LC(Y) we replace each element in

Yc by c, for all c ∈ C.

Proof. We denote the distribution induced by Algorithm 1

by PC,k and that induced by DPPk(LC(Y)) by P ′
k.

First we claim that both sampling algorithms can only sam-

ple k-singular subsets. By construction, PC,k picks one or

zero elements from each Yc. For P ′
k, if Y is k-nonsingular,

then there would be identical rows in (LC(Y))Y = LC(Y ),

resulting in det(LC(Y )) = 0. Hence both PC,k and P ′
k only

assign nonzero probability to k-singular sets Y . As a result,

we have

ek(LC(Y)) =
∑

C is k-singular

(
∏

c∈C

|Yc|) det(LC)

=
∑

C⊆C,|C|=k

(
∏

c∈C

|Yc| det(LC)) =
∑

|C|=k

det(L̃C) = ek(L̃).

For any Y = {y1, . . . , yk} ⊆ Y that is k-singular, we have

PC,k(Y ) =
det(L̃C(Y ))

ek(L̃)
∏k

i=1 |YC(yi)|
(2)

=
(
∏k

i=1 |YC(yi)|) det(LC(Y ))

ek(LC(Y))
∏k

i=1 |YC(yi)|
(3)

=
det(LC(Y ))

ek(LC(Y))
= P ′

k(Y ), (4)

which shows that these two distributions are identical, i.e.,

sampling from DPPk(L̃) followed by uniform sampling is

equivalent to directly sampling from DPPk(LC(Y)).

4 Partition, distortion and approximation

error

Let us provide some insight on quantities that affect the

distance ‖PC,k − Pk‖tv when sampling with Algorithm 1.

In a nutshell, this distance depends on three key quantities

Algorithm 1 COREDPP Sampling

Input: core kernel L̃ ∈ R
M×M and its eigendecompo-

sition; partition Π; size k
sample C ∼ DPPk(L̃)
sample yi ∼ Uniform(Yc) for c ∈ C
return Y = {y1, . . . , yk}

(defined below): the probability of nonsingularity δΠ, the

distortion factor 1 + εΠ, and the normalization factor.

For a partition Π we define the nonsingularity probability

δΠ as the probability that a draw Y ∼ DPPk(L) is not sin-

gular with respect to any Π′ ⊆ Π.

Given a coreset C, we define the distortion factor 1 + εΠ
(for εΠ ≥ 0) as a partition-dependent quantity, so that for

any c ∈ C, for all u, v ∈ Yc, and for any (k − 1)-singular

set S with respect to Π \ Yc the following bound holds:

det(LS∪{u})

det(LS∪{v})
=

Lu,u − Lu,SL
−1
S LS,u

Lv,v − Lv,SL
−1
S LS,v

≤ 1 + εΠ. (5)

If φ is the feature map corresponding to the kernel L,

then geometrically, the numerator of (5) is the length of

the projection of φ(u) onto the orthogonal complement of

span{φ(s) | s ∈ S}.

The normalization factor for a k-DPP (L) is simply ek(L).

Given Π, C and the corresponding nonsingularity probabil-

ity and distortion factors, we have the following bound:

Lemma 2. Let Y ∼ DPPk(L) and C(Y ) be the set where

we replace each y ∈ Y by its core c ∈ C, i.e., y ∈ Yc. With

probability 1− δΠ, it holds that

(1 + εΠ)
−k ≤

det(LC(Y ))

det(LY )
≤ (1 + εΠ)

k. (6)

Proof. Let c ∈ C and consider any (k − 1)-singular set S
with respect to Π \ Yc. Then, for any v ∈ Yc, using Schur

complements and by the definition of εΠ we see that

(1 + εΠ)
−1 ≤

det(LS∪{c})

det(LS∪{v})
=

Lc,c − Lc,SL
−1
S LS,c

Lv,v − Lv,SL
−1
S LS,v

=
||QS⊥φ(c)||2

||QS⊥φ(v)||2
≤ (1 + εΠ).

Here, QS⊥ is the projection onto the orthogonal comple-

ment of span{φ(s) | s ∈ S}, and φ the feature map corre-

sponding to the kernel L.

With a minor abuse of notation, we denote by C(y) = c
the core point corresponding to y, i.e., y ∈ Yc. For

any Y = {y1, . . . , yk}, we then define the sets Yi =
{C(y1), . . . , C(yi), yi+1, . . . , yk}, where we gradually re-

place each point by its core point, with Y0 = Y . If Y is
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k-singular, then C(yi) 6= C(yj) whenever i 6= j, and, for

any 0 ≤ i ≤ k − 1, it holds that

(1 + εΠ)
−1 ≤

det(LYi+1
)

det(LYi
)

≤ 1 + εΠ.

Hence we have

(1 + εΠ)
−k ≤

det(LC(Y ))

det(LY )
=

k−1∏

i=0

det(LYi+1
)

det(LYi
)

≤ (1 + εΠ)
k.

This bound holds when Y is k-singular, and, by definition

of δΠ, this happens with probability 1− δΠ.

Assuming εΠ is small, Lemma 2 states that if replacing a

single element in a given subset with another one in the

same part does not cause much distortion, then replacing

all elements in the subset with their corresponding cores

will cause little distortion. This observation is key to our

approximation: if we can construct such a partition and

coreset, we can safely replace all elements with core points

and then approximately sample with little distortion. More

precisely, we then obtain the following result that bounds

the variational error. Our subsequent construction aims to

minimize this bound.

Theorem 3. Let Pk = DPPk(L) and let PC,k be the dis-

tribution induced by Algorithm 1. With the normalization

factors Z = ek(L) and ZC = ek(L̃), the total variation

distance between Pk and PC,k is bounded by

‖Pk − PC,k‖tv ≤ |1− ZC

Z |+ kεΠ + (1− kεΠ)δΠ.

Proof. From the definition of Z and ZC we know that Z =∑
|Y |=k det(LY ) and

ZC =
∑

|Y |=k

det((LC(Y))Y ) =
∑

|Y |=k

det(LC(Y ))

=
∑

Y k-singular

det(LC(Y )).

The last equality follows since, as argued above,

det(LC(Y )) = 0 for nonsingular Y . It follows that

‖Pk − PC,k‖tv =
∑

|Y |=k

|Pk(Y )− PC,k(Y )|

=
∑

Y k-singular

|Pk(Y )− PC,k(Y )|+
∑

Y k-nonsingular

Pk(Y ).

(7)

For the first term, we have
∑

Y k-singular

|Pk(Y )− PC,k(Y )|

=
∑

Y k-singular

∣∣∣det(LY )

Z
−

det(LC(Y ))

ZC

∣∣∣

≤
∑

Y k-singular

∣∣∣ 1
Z
(det(LY )− det(LC(Y )))

∣∣∣

+
∑

Y k-singular

∣∣∣ det(LC(Y ))
( 1

Z
−

1

ZC

)∣∣∣

=
1

Z

∑

Y k-singular

det(LY )
∣∣∣1−

det(LC(Y ))

det(LY )

∣∣∣+ ZC

∣∣∣ 1
Z

−
1

ZC

∣∣∣

≤ kεΠ(1− δΠ) +
∣∣∣1− ZC

Z

∣∣∣,

where the first inequality uses the triangle inequality and

the second inequality relies on Lemma 2. For the second

term in (7), we use that, by definition of δΠ,
∑

Y k-nonsingular

Pk(Y ) = δΠ.

Thus the total variation difference is bounded as

‖Pk − PC,k‖tv ≤
∣∣∣1− ZC

Z

∣∣∣+ kεΠ(1− δΠ) + δΠ

=
∣∣∣1− ZC

Z

∣∣∣+ kεΠ + (1− kεΠ)δΠ.

In essence, if the probability of nonsingularity and the dis-

tortion factor are low, then it is possible to obtain a good

coreset approximation. This holds, for example, if the data

has intrinsic (grouping) structure. In the next subsection

we provide further intuition on when we can achieve low

error.

4.1 Sufficient conditions for a good bound

Theorem 3 depends on the data and the partition Π. Here,

we aim to obtain some further intuition on the properties of

Π that govern the bound. At the same time, these properties

suggest sufficient conditions for a “good” coreset C. For

each Yc, we define the diameter

ρc := max
u,v∈Yc

√
Luu + Lvv − 2Luv. (8)

Next, define the minimum distance of any point u ∈ Yc

to the subspace spanned by the feature vectors of points in

a “complementary” set S that is singular with respect to

Π \ Yc:

dc := min
S,u

√
det(LS∪{u})

det(LS) = min
S,u

√
Lu,u − Lu,SL

−1
S LS,u.

Lemma 4 connects these quantities with εΠ; it essentially

poses a separability condition on Π (i.e., Π needs to be

“aligned” with the data) so that the bound on εΠ holds.
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Lemma 4. If dc > ρc for all c ∈ C, then

εΠ ≤ max
c∈C

(2dc − ρc)ρc
(dc − ρc)2

. (9)

Proof. For any c ∈ C and any u, v ∈ Yc and S (k − 1)-
singular with respect to Π\Yc, we have

det(LS∪{u})

det(LS∪{v})
=

det(LS)(Lu,u − Lu,SL
−1
S LS,u)

det(LS)(Lv,v − Lvi,SL
−1
S LS,vi

)

=
Lu,u − Lu,SL

−1
S LS,u

Lv,v − Lv,SL
−1
S LS,v

=
‖QS⊥φ(u)‖2

‖QS⊥φ(v)‖2
.

Without loss of generality, we assume det(LS∪{u}) ≥
det(LS∪{v}). By definition of ρc we know that

0 ≤ ‖QS⊥φ(u)‖ − ‖QS⊥φ(v)‖

≤ ‖QS⊥(φ(u)− φ(v))‖ ≤ ‖φ(u)− φ(v)‖ ≤ ρc.

Since 0 < ‖QS⊥φ(v)‖ ≤ ‖QS⊥φ(u)‖ ≤ ‖φ(u)‖ by as-

sumption, we have

‖QS⊥φ(u)‖2

‖QS⊥φ(v)‖2
≤

‖QS⊥φ(u)‖2

(‖QS⊥φ(u)‖ − ρc)2

≤
( ‖φ(u)‖

‖φ(u)‖ − ρc

)2

≤
( dc
(dc − ρc)

)2

.

Then, by definition of εΠ, we have

1 + εΠ ≤ max
c

d2c
(dc − ρc)2

,

from which it follows that

εΠ ≤ max
c

(2dc − ρc)ρc
(dc − ρc)2

.

5 Efficient construction

Theorem 3 states an upper bound on the error induced by

COREDPP and relates the total variation distance to Π and

C. Next, we explore how to efficiently construct Π and C
that approximately minimize the upper bound.

5.1 Constructing Π

Any set Y sampled via COREDPP is, by construction, sin-

gular with respect to Π. In other words, COREDPP as-

signs zero mass to any nonsingular set. Hence, we wish to

construct a partition Π such that its nonsingular sets have

low probability under DPPk(L). The optimal such partition

minimizes the probability δΠ of nonsingularity. A small δΠ
value also means that the parts of Π are dense and compact,

i.e., the diameter ρc in Equation (8) is small.

Finding such a partition optimally is hard, so we resort to

local search. Starting with a current partition Π, we re-

assign each y to a part Yc to minimize δΠ. If we assign y to

Yc, then the probability of sampling a set Y that is singular

with respect to the new partition Π is

P[Y ∼ DPPk(L) is singular] =
1

Z

∑

Y k-singular

det(LY )

=
1

Z

( ∑

Y k-sing.,y /∈Y

det(LY ) +
∑

Y k-sing.,y∈Y

det(LY )
)

=
1

Z

(
const +

∑

Y ′ (k−1)-sing. w.r.t Π \ Yc

det(LY ′∪{y})
)

=
1

Z

(
const + Lyys

Π
k−1(L

y
8c)

)
,

where sΠk (L) :=
∑

Y k-sing. det(LY ). The matrix L8c de-

notes L with rows Yc and columns Yc deleted, and Ly =
L− LY,yLy,Y . For local search, we would hence compute

Lyys
Π
k−1(L

y
8c) for each point y and core c, assign y to the

highest-scoring c. Since this testing is still expensive, we

introduce further speedups in Section 5.3.

5.2 Constructing C

When constructing C, we aim to minimize the upper bound

on the total variation distance between Pk and PC,k stated

in Theorem 3. Since δΠ and εΠ only depend on Π and not

on C, we here focus on minimizing |1− ZC

Z |, i.e., bringing

ZC as close to Z as possible. To do so, we again employ

local search and subsequently swap each c ∈ C with its best

replacement v ∈ Yc. Let Cc,v be C with c replaced by v.

We aim to find the best swap

v = argminv∈Yc
|Z − ZCc,v | (10)

= argminv∈Yc
|Z − ek(LCc,v(Y))|. (11)

Computing Z requires computing the coefficients ek(L),
which takes a total of O(N3) time2. In the next section, we

therefore consider a fast approximation.

5.3 Faster constructions and further speedups

Local search procedures for optimizing Π and C can be fur-

ther accelerated by a sequence of relaxations that we found

to work well in practice (see Section 6). We begin with

the quantity sΠk−1(L
y
8c) that involves summing over sub-

determinants of the large matrix L. Assuming the initial-

ization is not too bad, we can use the current C to approx-

imate Y . In particular, when re-assigning y, we substitute

all other elements with their corresponding cores, result-

ing in the kernel L̂ = LC(Y). This changes our objective

to finding the c ∈ C that maximizes sΠk−1(L̂
y
8c). Key to a

fast approximation is now Lemma 5, which follows from

Lemma 1.

2In theory, this can be computed in O(Nω log(N)) time [13],
but the eigendecompositions and dynamic programming used in
practice typically take cubic time.
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Lemma 5. For all k ≤ |Π|, it holds that

sΠk (LC(Y)) = ek(LC(Y)) = ek(L̃).

Proof.

sΠk (LC(Y)) =
∑

Y k-sing.

det((LC(Y))Y ) =
∑

Y k-sing.

det(LC(Y ))

=
∑

|Y |=k

det(LC(Y )) = ek(LC(Y)) = ek(L̃);

the last equality was shown in the proof of Theorem 3.

Computing the normalizer ek(L̃) only needs O(M3) time.

We refer to this acceleration as COREDPP-Z.

Second, when constructing C, we observed that ZC is com-

monly much smaller than Z. Hence, a fast approximation

merely greedily increases ZC without computing Z.

Third, we can be lazy in a number of updates: for example,

we only consider changing cores for the part that changes.

When a part Yc receives a new member, we check whether

to switch the current core c to the new member. This reduc-

tion keeps the core adjustment at time O(M3). Moreover,

when re-assigning an element y to a different part Yc, it

is usually sufficient to only check a few, say, ν parts with

cores closest to y, and not all parts. The resulting time

complexity for each element is O(M3).

With this collection of speedups, the approximate construc-

tion of Π and C takes O(NM3) for each iteration, which is

linear in N , and hence a huge speedup over direct meth-

ods that require O(N3) preprocessing. The iterative al-

gorithm is shown in Algorithm 2. The initialization also

affects the algorithm performance, and in practice we find

that kmeans++ as an initialization works well. Thus we use

COREDPP to refer to the algorithm that is initialized with

kmeans++ and uses all the above accelerations. In prac-

tice, the algorithm converges very quickly, and most of the

progress occurs in the first pass through the data. Hence, if

desired, one can even use early stopping.

6 Experiments

We next evaluate COREDPP, and compare its efficiency and

effectiveness against three competing approaches:

- Partitioning using k-means (with kmeans++ initializa-

tion [7]), with C chosen as the centers of the clusters;

referred to as K++ in the results.

- The adaptive, stochastic Nyström sampler of [3]

(NysStoch). We used M dimensions for NysStoch, to

use the same dimensionality as COREDPP.

- The Metropolis-Hastings DPP sampler MCDPP [28].

We use the well-known Gelman and Rubin multiple se-

quence diagnostic [19] to empirically judge mixing.

Algorithm 2 Iterative construction of Π and C
Require: Π initial partition; C initial coreset; k the size of sam-

pled subset; ν number of nearest neighbors taken into consid-
eration
while not converged do

for all y ∈ Y do
c← group in which y lies currently: y ∈ Yc

if y ∈ C then
continue

end if
G← {groups of ν cores nearest to Xy}

g∗ = argmaxg∈Gs
Π
k−1(L̂

y
8g)

if c 6= g∗ then
Yc = Yc\{y}
Yg∗ = Yg∗ ∪ {y}
if ek(LCg∗,j(Y)) > ek(LCc,j(Y)) then

C ← Cg
∗,y

end if
end if

end for
for all g ∈ [M ] do

j = argmaxj∈Yg
ek(LCg,j(Y))

C = Cg,j

end for
end while

In addition, we show results using different variants of

COREDPP: COREDPP-Z described in Section 5.3 and vari-

ants that are initialized either randomly (COREDPP-R) or

via kmeans++ (COREDPP).

6.1 Synthetic Dataset

We first explore the effect of our fast approximate sampling

on controllable synthetic data. The experiments here com-

pare the accuracy of the faster COREDPP from Section 5.3

to COREDPP-Z, COREDPP-R and K++.

We generate an equal number of samples from each of

nClust 30-dimensional Gaussians with means of varying

length (`2-norm) and unit variance, and then rescale the

samples to have the same length. As the length of the sam-

ples increases, εΠ and δΠ shrink. Finally, L is a linear ker-

nel. Throughout this experiment we set k = 4 and N = 60
to be able to exactly compute ‖P̂k − Pk‖tv. We extract

M = 10 core points and use ν = 3 neighboring cores. Re-

call from Section 5.3 that when considering the parts that

one element should be assigned to, it is usually sufficient

to only check ν parts with cores closest to y. Thus, ν = 3
means we only consider re-assigning each element to its

three closest parts.

Results. Fig. 1 shows the total variation distance ‖P̂k −
Pk‖tv defined in Equation (1) for the partition and

cores generated by K++, COREDPP, COREDPP-R and

COREDPP-Z as nClust and the length vary. We see that

in general, most approximations improve as εΠ and δΠ
shrink. Remarkably, the COREDPP variants achieve much
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Figure 5: Overhead (setup) time in seconds with varying

ground set size (N ) on MNIST (left) and GENES (right).

For overhead time, i.e., time to set up the sampler that is

spent once in the beginning, we compare against NysStoch:

COREDPP constructs the partition and L̃, while NysStoch

selects landmarks and constructs an approximation to

the data. For sampling time, we compare against both

NysStoch and MCDPP: COREDPP uses Algorithm 1, and

NysStoch uses the dual form of k-DPP sampling [30]. We

did not include the time for convergence diagnostics into

the running time of MCDPP, giving it an advantage in

terms of running time.

Overhead. Fig. 5 shows the overhead times as a function

of N . For MNIST we vary N from 6,000 to 20,000 and

for GENES we vary N from 6,000 to 10,000. These val-

ues of N are already quite large, given that the DPP kernel

is a dense RBF kernel matrix; this leads to increased run-

ning time for all compared methods. The construction time

for NysStoch and COREDPP is comparable for small-sized

data, but NysStoch quickly becomes less competitive as the

data gets larger. The construction time for COREDPP is lin-

ear in N , with a mild slope. If multiple samples are sought,

this construction can be performed offline as preprocessing

as it is needed only once.

Sampling. Fig. 6 shows the time to draw one sample as a

function of N , comparing COREDPP against NysStoch and

MCDPP. COREDPP yields samples in time independent of

N and is extremely efficient – it is orders of magnitude

faster than NysStoch and MCDPP.

We also consider the time taken to sample a large num-

ber of subsets, and compare against both NysStoch and

MCDPP—the sampling times for drawing approximately

independent samples with MCDPP add up. Fig. 7 shows

the results. As more samples are required, COREDPP be-

comes increasingly efficient relative to the other methods.

7 Conclusion

In this paper, we proposed a fast, two-stage sampling

method for sampling diverse subsets with k-DPPs. As op-

posed to other approaches, our algorithm directly aims at
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Figure 6: Average time for drawing one sample as

the ground set size (N ) varies on MNIST (left) and

GENES (right). Note that the time axis is shown in log

scale.
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Figure 7: Average time for sampling different numbers

of subsets with N = 5000, M = 40 and k = 5 on

MNIST (left) and GENES (right).

minimizing the total variation distance between the approx-

imate and original probability distributions. Our experi-

ments demonstrate the effectiveness and efficiency of our

approach: not only does our construction have lower error

in total variation distance compared with other methods, it

also produces these more accurate samples efficiently, at

comparable or faster speed than other methods.
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